P P SAVANI UNIVERSITY

First Semester of M.Sc. DS Examination February 2023

SESH7020 Mathematical Methods for Data Science

13.02.2023, Monday Time: 10:00 a.m. To 12:30 p.m.

Maximum Marks: 60

Instructions:

- 1. The question paper comprises of two sections.
- Section I and II must be attempted in separate answer sheets.
 Make suitable assumptions and draw neat figures wherever required.
 Use of scientific calculator is allowed.

0.4	SECTION - I					
Q - 1 (i)	Choose the correct answer.	[05]	СО	BTL		
(*)	The n^{th} derivative of e^{ax} is (c) e^{anx} (d) $a^n e^{ax}$	1	1	1		
(ii)				2.0		
()	The value of $\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}$ is		1	2,3		
	(a) 3 (b) 2 (c) 1 (d) 0					
(iii)	The value of $\lim_{n\to\infty} \frac{\log n}{n} = \underline{\hspace{1cm}}$.		1	2,3		
	그 그렇게 되었다. 그리고 프랑스 사람들은 보는 사람들에 보다는 경우를 하는 것이 되었다면 되었다. 그 그 사람들이 되었다.	•				
(iv)	(6) 1		2			
(11)	A function $f(x, y)$ is said to be homogeneous function in which the power of each term is the		2	2		
	(a) same (b) different (c) both (a) and (b) (d) None					
(v)	The second derivative test if $f_{xx}f_{yy} - f_{xy}^2 = 0$ at (a,b) then		4	2		
	(a) maximum (b) minimum (c) inconclusive (d) saddle point					
Q - 2 (a)	Check whether the function is continuous or not: $f(x) = \begin{cases} \frac{\sin x}{x} & ; x \neq 0 \\ 0 & ; x = 0 \end{cases}$	[05]	1	4,5		
	(* ,**)					
Q-2(b)	Identify types of discontinuity.	[05]	1	_		
- (-)	Verify Rolle's theorem in $[-1,1]$ for function $f(x) = x^2$.	[us]	1	5		
Q - 2 (a)	OR Evaluate following limits:	[05]	1	5		
	I. $\lim_{x \to 1} \frac{x^3 - x^2 - 5x - 3}{(x + 1)^2}$ II. $\lim_{x \to 1} \frac{x^{-1} - 1}{x - 1}$	[oo]				
	1. $\lim_{x \to -1} \frac{1}{(x+1)^2}$ II. $\lim_{x \to 1} \frac{1}{x-1}$					
Q-2(b)	Test the convergence of the series $\frac{1}{1\cdot 3} + \frac{2}{3\cdot 5} + \frac{3}{5\cdot 7} + \frac{4}{7\cdot 0} + \cdots$	[05]	2	45		
	1.3 3.5 5.7 7.9	[oo]	-	4,5		
Q-3(a)	Test the convergence of series $\sum_{n=1}^{\infty} \frac{2^n}{n^3+1}$.	[05]	2	4.5		
	n=1 $n + 1$					
Q - 3 (b)	Find the values of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at the point $(4,-5)$ if $f(x,y) = x^2 + 3xy + y - 1$.	[05]	4	5		
OR						
Q - 3 (a)	Find the Maclaurin's series expansion of $\cosh x$ and $\sinh x$.	[05]	2	3,5		

;							
;							
,							
$T(x) = (x_1 - 2x_2 + x_3, x_2 + 5x_3)$. Is T a linear transformation? Let $T: M_{22} \to R^2$ defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b \\ c+d \end{pmatrix}$ is linear. Describe its [05] 3 3,5							
5							
ŀ							
Euclidean inner product $\langle u, v \rangle = 3u_1v_1 + 2u_2v_2$ satisfies the four inner product axioms.							
2							
5 5 5							

 $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ Find a OR-decomposition of $A = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}$

> CO : Course Outcome Number BTL : Blooms Taxonomy Level

Level of Bloom's Revised Taxonomy in Assessment

1: Remember	2: Understand	3: Apply	
4: Analyze	5: Evaluate	6: Create	